Microbiological Produce Safety Issues at Retail

Michael Doyle

- International sources of produce
- Produce as vehicle of foodborne illnesses
- Food safety issues with fresh-cut produce
- Cantaloupe
- Salsa
- Parasites/Cyclospora
- Chemophobia/Natural Foods

United States Food Imports

- Approximately 15% of food consumed in USA in 2006 was imported; currently approaching 20%

Import Shares (Percentage) of Major Foods Consumer in United States, by selected food categories (2009, 2010)

<table>
<thead>
<tr>
<th>Food Category</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td>Lamb</td>
<td>52.4</td>
<td></td>
</tr>
<tr>
<td>Fish (fresh or frozen)</td>
<td>96.4</td>
<td></td>
</tr>
<tr>
<td>Fruits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresh</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td>Canned</td>
<td>38.9</td>
<td></td>
</tr>
<tr>
<td>Dried</td>
<td>21.3</td>
<td></td>
</tr>
<tr>
<td>Juices</td>
<td>62.4</td>
<td></td>
</tr>
<tr>
<td>Orange</td>
<td>28.3</td>
<td></td>
</tr>
<tr>
<td>Apple</td>
<td>85.2</td>
<td></td>
</tr>
</tbody>
</table>

www.fas.usda.gov/gats
Import Shares (Percentage) of Major Foods
Consumer in United States, by selected food categories (2009, 2010)

- Tree nuts: 41.1%
- Vegetables:
 - Fresh: 20.0%
 - Canned: 14.6%
- Honey: 63%
- Spices: 89.9%

www.fas.usda.gov/gats

Microbiological Safety Issues
Associated with Imported Foods

- Sanitation practices for food production and preparation are not universally equivalent throughout the world.
- Importing foods can move pathogens from areas where pathogen is indigenous to locations where it seldom or does not exist.
 - Example, *Cyclospora* in raspberries from Guatemala to U.S. and Canada.

Examples of Food Safety Concerns
Associated with Imported Produce

- Centuries old tradition of using human excreta on farmland is widespread in east Asia, especially in China and Vietnam.
- Irrigation water contaminated with untreated human and animal fecal waste.
- Insanitary harvesting practices of importing countries.
 - Children infected with norovirus or hepatitis A accompany parents in produce field during harvest.

Foodborne Disease Outbreaks Attributed to a Single Commodity by Leading Food Vehicles, 2006-2010

<table>
<thead>
<tr>
<th>Year</th>
<th>Rank</th>
<th>Food Vehicle</th>
<th>% of Outbreaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>1</td>
<td>Produce</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Meat</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Fish and Shellfish</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Poultry</td>
<td>14</td>
</tr>
<tr>
<td>2007</td>
<td>1</td>
<td>Meat</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Produce</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Poultry</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Fish and Shellfish</td>
<td>17</td>
</tr>
</tbody>
</table>

CDC, MMWR 58:609-615 (2009)
MMWR 59:573-979 (2010)
MMWR 60:1197-1320 (2011)

Foodborne Disease Outbreaks Attributed to a Single Commodity by Leading Food Vehicles, 2008-2010

<table>
<thead>
<tr>
<th>Year</th>
<th>Rank</th>
<th>Food Vehicle</th>
<th>% of Outbreaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>1</td>
<td>Produce</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Meat</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Poultry</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Fish and Shellfish</td>
<td>14</td>
</tr>
<tr>
<td>2009 - 2010</td>
<td>1</td>
<td>Produce</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Meat</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Fish and Shellfish</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Dairy</td>
<td>12</td>
</tr>
</tbody>
</table>

Attribution of Foodborne Illnesses and Deaths to Food Commodities (U.S. Outbreak Data 1998 - 2010)

<table>
<thead>
<tr>
<th>Commodity</th>
<th>% Illnesses</th>
<th>% Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produce</td>
<td>46</td>
<td>23</td>
</tr>
<tr>
<td>Leafy</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>Fruits - nuts</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>Vine - stalk</td>
<td>7.9</td>
<td>7</td>
</tr>
<tr>
<td>Root</td>
<td>3.6</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Examples of Produce Not Previously Associated with Foodborne Outbreaks Until 2006 - 2013

- Bagged spinach (*E. coli* O157:H7)
- Carrot juice (Botulism)
- Peanut butter and peanut paste (*Salmonella*)
- Broccoli powder on snack food (*Salmonella*; China)
- Jalapeno peppers (*Salmonella*; Mexico)
- Turkish pine nuts (*Salmonella*; Turkey)
- Pistachios (*Salmonella*)
- Whole papaya (*Salmonella*)
- Hazelnuts (*E. coli* O157:H7)
- Bagged organic spinach and spring mix (*E. coli* O157:H7)
- Bagged salad mix (lettuce, cabbage, carrots) (*Cyclospora*; Mexico)
- Cilantro (*Cyclospora*; Mexico)

Earthbound Farm Spinach & Vegetables Test & Hold:
Raw SJB & Yuma 2007 thru SJB & Yuma 2010

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Raw MC Incidents</td>
<td>32</td>
<td>13</td>
<td>86</td>
<td>8</td>
<td>242</td>
<td>13</td>
<td>107</td>
</tr>
<tr>
<td>Total Samples</td>
<td>41,025</td>
<td>29,340</td>
<td>44,067</td>
<td>26,884</td>
<td>44,862</td>
<td>28,037</td>
<td>38,681</td>
</tr>
<tr>
<td>% Raw MC Incidents</td>
<td>0.08%</td>
<td>0.04%</td>
<td>0.18%</td>
<td>0.03%</td>
<td>0.48%</td>
<td>0.04%</td>
<td>0.60%</td>
</tr>
</tbody>
</table>

Fresh-cut Produce is Wounded Plant Tissue

- Preparing **fresh-cut** produce involves cutting (lettuce, apples, pears), shredding (carrots, cabbage), dicing (tomatoes), or peeling (carrots, oranges)
- Microbes attach more easily to cut or bruised surfaces than intact produce
- Cut surfaces of produce release large amounts of liquid containing nutrients that are readily utilized by the attached microbes

Food Safety Risks Associated with Field Processing of Lettuce

- Most fresh-cut (shredded and bagged) iceberg lettuce is **cut and cored in the field**
- Field coring involves using a knife with a cylindrical coring ring on the opposite end to sever the lettuce heads from roots near the soil surface and then remove the core with the coring ring
- Blades may contact soil and transfer it to lettuce tissue along with microbial contaminants in the soil
- Lettuce forms white "latex" on cut surfaces soon after it is cut
 - Latex prevents contact with wash water or disinfectant

Fresh-cut produce: fresh produce that has been processed by peeling, dicing, chopping, shredding, coring, trimming, or washing, with or without washing or other treatment, prior to being packaged for consumption.

FDA data
Iceberg Lettuce Field Harvesting and Coring Knives

Image of two coring knives.

E. coli O157:H7 in iceberg lettuce heads sequentially cut and cored with the same field-coring device with a blade that had been immersed in soil containing ca. 500 E. coli O157:H7/g

<table>
<thead>
<tr>
<th>Lettuce piece</th>
<th>Number of samples positive by enrichment per three replicate samples analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stem end</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td>Inner core</td>
<td>2 2 2 3 3 3 2 2 2 2</td>
</tr>
<tr>
<td>Outer core</td>
<td>2 2 2 2 3 3 3 2 2 1</td>
</tr>
</tbody>
</table>

Effectiveness of Chlorine to Inactivate E. coli O157:H7 on Lettuce

<table>
<thead>
<tr>
<th>Treatment Conditions</th>
<th>Log Reduction E. coli O157</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 ppm, 5 min, 22°C</td>
<td>0.7 (on surface) 1.0 (on cut-edge)</td>
<td>Takeuchi and Frank (2000)</td>
</tr>
<tr>
<td>20 ppm, 9 sec, 20°C or 50°C</td>
<td>No different than water control</td>
<td>Li et al. (2001)</td>
</tr>
<tr>
<td>100 ppm, 3 min, 4°C</td>
<td>1.0</td>
<td>Delaquis et al. (2002)</td>
</tr>
</tbody>
</table>

Examples of Salmonellosis Outbreaks Associated with Cantaloupes

<table>
<thead>
<tr>
<th>Year</th>
<th>Pathogen</th>
<th>Location</th>
<th>No. of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989-90</td>
<td>S. Chester</td>
<td>Multistate</td>
<td>295</td>
</tr>
<tr>
<td>1991</td>
<td>S. Poona</td>
<td>Multistate</td>
<td>> 400</td>
</tr>
<tr>
<td>1997</td>
<td>S. Saphra</td>
<td>California</td>
<td>24</td>
</tr>
<tr>
<td>1998</td>
<td>S. Oranienburg</td>
<td>Canada</td>
<td>22</td>
</tr>
<tr>
<td>2000</td>
<td>S. Poona</td>
<td>Multistate</td>
<td>46</td>
</tr>
<tr>
<td>2001</td>
<td>S. Poona</td>
<td>Multistate</td>
<td>50</td>
</tr>
<tr>
<td>2002</td>
<td>S. Poona</td>
<td>Multistate, Canada</td>
<td>58</td>
</tr>
<tr>
<td>2006</td>
<td>S. Oranienburg</td>
<td>10 States, Canada</td>
<td>41</td>
</tr>
<tr>
<td>2007</td>
<td>S. Litchfield</td>
<td>16 States, Canada</td>
<td>60</td>
</tr>
<tr>
<td>2008</td>
<td>S. Javiana</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>S. Panama</td>
<td>10 States</td>
<td>20</td>
</tr>
<tr>
<td>2011</td>
<td>S. Uganda</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Listeria monocytogenes Infections from Foods in Commercial Establishments

- Case-control study of 169 sporadic case patients with L. monocytogenes infection from 2000 - 2003
- L. monocytogenes infections were associated with:
 1. Eating *melons* at a commercial establishment
 2. Eating *hummus* prepared in a commercial establishment

Cantaloupe-associated Listeriosis Outbreak

- September - November 2011 a total of 146 cases of listeriosis, including 31 deaths and 1 miscarriage, in 28 states; mostly elderly
- Vehicle was Rocky-Ford brand *cantaloupes* grown by Jensen Farms, Granada, CO
Fresh-cut Melons are a Convenience Food Pushing the Limits of Safety

- pH of melons
 - Cantaloupe: 6.2 - 7.1
 - Honeydew: 6.3 - 6.7
 - Watermelon: 5.2 - 5.8

- Examples of Outbreaks
 - >400 cases of salmonellosis - cantaloupe at salad bars
 - 18 cases of salmonellosis - watermelon cut at supermarket
 - 17 cases of salmonellosis - watermelon cut at supermarket
 - 206 cases of norovirus infection - melon cut by infected foodhandler

Pathogen growth on precut melons
- 10^6 increase of Salmonella in watermelon at 23°C for 24 h
- 10^5 increase of Listeria monocytogenes in watermelon at 20°C for 2 d
- 10^4 increase of Listeria monocytogenes in Valenciano amarelo (Brazilian) melon at 10°C for 4 d or 20°C for 1 d
- Salmonella generation times at 23°C
 - Cantaloupe: 1.2 h
 - Honeydew: 1.1 h
 - Watermelon: 1.0 h

Evaluation of Sanitizers for the Removal of Salmonella and Listeria from the Surface of Eastern Cantaloupes

Cathy Webb
Inoculate melons with *Salmonella* or *L. mono* at stem scar and netted rind

Sanitizers:
- *Salmonella*
 - Water
 - Chlorine 120 ppm
 - Fit® 2% Levulinic acid/0.2% SDS
- *L. mono*
 - Chlorine 200 ppm
 - Chlorine dioxide 3 ppm
 - 5% Levulinic acid / 2% SDS

Comparison of simulated dump tank treatments on populations of *S. Poona* on netted rind and stem scar tissue of cantaloupes

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Stem Scar Mean surviving S. Poona log reduction</th>
<th>log reduction</th>
<th>Netted Rind Mean surviving S. Poona log reduction</th>
<th>log reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6.98 ± 0.35 A^a</td>
<td>NA^a</td>
<td>5.78 ± 0.58 A</td>
<td>NA</td>
</tr>
<tr>
<td>Water</td>
<td>6.67 ± 0.54 AB</td>
<td>0.31</td>
<td>4.81 ± 0.61 B</td>
<td>0.97</td>
</tr>
<tr>
<td>Chlorine, 120 ppm</td>
<td>6.39 ± 0.62 B</td>
<td>0.59</td>
<td>4.19 ± 0.88 BC</td>
<td>1.59</td>
</tr>
<tr>
<td>Fit® 1% Levulinic acid/0.1% SDS</td>
<td>5.86 ± 0.53 C</td>
<td>1.32</td>
<td>3.72 ± 1.09 C</td>
<td>2.86</td>
</tr>
<tr>
<td>Fit® 2% Levulinic acid/0.2% SDS</td>
<td>5.61 ± 0.49 C</td>
<td>1.37</td>
<td>2.41 ± 1.21 D</td>
<td>3.37</td>
</tr>
</tbody>
</table>

* Log reduction calculated by subtracting log CFU/g of each treatment from log CFU/g of control.
^a Mean data in each column not followed by the same letter are significantly different (p<0.05).

Detection of *Salmonella Poona* in cantaloupe flesh after 18 hrs at 22°C following surface inoculation

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Stem Scar Flesh Number of positive flesh samples/Number of samples tested</th>
<th>Netted Rind Flesh Number of positive flesh samples/Number of samples tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>5/12</td>
<td>5/12</td>
</tr>
<tr>
<td>Water</td>
<td>10/10</td>
<td>10/10</td>
</tr>
<tr>
<td>120 ppm Chlorine</td>
<td>7/10</td>
<td>6/10</td>
</tr>
<tr>
<td>Fit® 2% Levulinic acid/0.2% SDS</td>
<td>14/20</td>
<td>0/20</td>
</tr>
</tbody>
</table>

Conclusions

- Fit® 2% Levulinic acid / 0.2% SDS treatment reduced *S. Poona* by 3.5 log compared to 2.3 log reduction by 120 ppm chlorine on the netted rind
- Fit® 2% Levulinic acid / 0.2% SDS and 120 ppm chlorine reduced *S. Poona* by 1.5 log at the stem scar
- Fit® 2% Levulinic acid / 0.2% SDS applied on the netted rind resulted in no contaminated flesh samples but did not prevent infiltration (cross contamination) at the stem scar

Survival and growth of *Salmonella* in salsa and related ingredients

- Li Ma^1
- Guodong Zhang^1^*
- Michael P. Doyle^1
- Peter Gerner-Smidt^2
- Robert V. Tauxe^2

^1Center for Food Safety, University of Georgia
^2Center for Food Safety and Applied Nutrition, FDA
^3Centers for Disease Control and Prevention

J. Food Prot. 73:434-444 (2010)
Background

- A multistate outbreak of *Salmonella* Saintpaul infections associated with multiple raw produce items, 2008
- Jalapeno peppers
- Salsa
 - Two clusters of cases (47 & 33) associated with eating salsa
 - Low in pH, hot, herbal components

Objectives

- To determine the survival and growth characteristics of *Salmonella* on raw and chopped jalapeno peppers, Roma tomatoes, and cilantro, and in salsa
- To identify ingredients in salsa that substantially influence the survival and growth of *Salmonella* during storage

Methods

- *Salmonella* strains: 5-strain mixture
- Chopped vegetables and inoculation:
 - Tomatoes, jalapeno peppers, and cilantro, chopped into small pieces; direct inoculation.
- Salsa preparation and inoculation:
 - 1st set: 4 recipes (A, B, C, and R), direct inoculation, 21°C
 - 2nd set: recipe manipulation, A, B, and C
- Storage and sampling: 4, 12, and 21°C; 0, 4h, 1, 2, 5, and 7 days.

Survival and growth of *Salmonella* in chopped vegetables

Survival and growth of *Salmonella* in salsas
Conclusions

- *Salmonella* grew in chopped jalapeno peppers, Roma tomatoes, and cilantro at 12 and 21°C, with chopped jalapeno pepper being the most supportive of *Salmonella* growth.
- *Salmonella* neither grew nor was inactivated in chopped jalapeno peppers, Roma tomatoes, or cilantro held at 4°C for 7 days.

Foodborne Parasites: Cyclosporiasis Outbreak in USA in 2013

- 631 cases of persons infected with *Cyclospora cayetanensis* between June - August 2013
- More than one outbreak:
 - IA and NE cases associated with a salad mix consumed at national chain restaurants and supplied by Taylor Farms de Mexico
 - TX cases associated with contaminated fresh cilantro from Puebla, Mexico

CDC (http://www.cdc.gov/parasites/cyclosporiasis/outbreaks/investigation_2013.html)

Cyclosporiasis Outbreak - 2014

- 304 Cases of cyclosporiasis reported in US in 2014, as of August 26
- 64% of cases in Texas; all reported July 2014
- Several illnesses associated with cilantro from Puebla, Mexico

CDC, Outbreak Investigations, 2014
Global ranking by importance of Top 15 FOODBORNE PARASITES and their primary food vehicle:

- *Taenia solium* – pork
- *Echinococcus granulosus* – fresh produce
- *Echinococcus multilocularis* – fresh produce
- *Trichinella spiralis* – pork
- *Opisthorchiidae* – fresh water fish
- *Opisthorchis viverrini* – fresh produce
- *Ascaris lumbricoides* – fresh produce
- *Cryptosporidium spp.* – fresh produce, fruit juice, milk
- *Entamoeba histolytica* – fresh produce
- *Trichinella spiralis* – pork
- *Opisthorchiidae* – fresh water fish
- *Ascaris lumbricoides* – fresh produce
- *Cryptosporidium spp.* – fresh produce, fruit juice, milk
- *Entamoeba histolytica* – fresh produce
- *Trichinella spiralis* – pork
- *Opisthorchiidae* – fresh water fish
- *Ascaris lumbricoides* – fresh produce
- *Cryptosporidium spp.* – fresh produce, fruit juice, milk
- *Entamoeba histolytica* – fresh produce
- *Trichinella spiralis* – pork
- *Opisthorchiidae* – fresh water fish
- *Ascaris lumbricoides* – fresh produce

Chemophobia/"Natural Foods" and the Blogosphere

- Consumer movement, initially in Europe, to remove food additives/"chemicals" from foods
 - Using "blogosphere" to communicate, which includes misinformation that is not grounded in science-based data
- "Processed foods" are a target
 - Marion Nestle's (New York University) definition of "processed foods" is based on number of food additives, especially those with esoteric names

Chemophobia/"Natural Foods"

- Can have adverse public health consequences
 - Remove benzoate from foods
 - Pressure from retailers on food manufacturers to remove benzoate from processed foods
 - Next on list is sorbate (naturally occurring in certain berries such as European mountain ash berries)

Chemophobia/"Natural Foods"

- Significance of removing benzoate
 - Frequently used in foods (e.g., beverages, dairy-based fillings in baked goods) to control molds and yeasts
 - Can also inhibit growth of foodborne bacterial pathogens such as *Staphylococcus aureus*
 - Benzoic acid is a naturally-occurring antimicrobial in cranberries, blackberries, apricots, cherries, plums, cinnamon, cloves, coffee beans, honey

Chemophobia/Preservative-free Foods

- Recent recalls or consumer complaints of preservative-free foods
 - Organic baby food (microbial spoilage)
 - String cheese (microbial spoilage)
 - Yogurt (microbial spoilage)
 - UHT-packaged juice-like beverage (microbial spoilage)
Learnings

- Removing certain food preservatives can have unintended consequences with regard to the microbiological safety of a product
- Can also substantially reduce shelf life of many foods
- Base use of microbial inhibitors on public health implications and sound science

Concluding Comments

- Produce is a leading vehicle of foodborne illness, with fresh-cut leafy greens and melons of particular concern
- Cantaloupe is prone to pathogen contamination, and many commonly used sanitizers are not fully effective in mitigating pathogen contamination, especially at the stem scar
Concluding Comments

- Salsa and chopped vegetable ingredients (cilantro, jalapeno peppers, tomatoes) can support prolific growth of *Salmonella*, especially at room temperature

- Cilantro is a prominent vehicle of *Salmonella* and *Cyclospora*

Concluding Comments

- "Natural" foods that do not contain antimicrobial preservatives may be a disaster in the making, depending on the food’s ability to support the growth of pathogens and spoilage microbes and storage temperature